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Talking: Nimmi Ramanujam

A Focus on Women'’s Cancers
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RE: Single cell metabolomics symposium
af Cunningham, Stephen
1am here as well. | will try to stay through the end|
) . .
Two women'’s cancers: two solutions
Increase screening decreases incidence of Increase screening does not decrease
cervical cancer metastatic disease
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In spite of early detection recurrence
affects overall survival
Decreased survival from early recurrence Risk of recurrence by breast cancer subtypes
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Targeted therapy has improved outcomes, but
recurrence persists

Trastuzumab targets Her2 Targeting the Her2 receptor decreases recurrences
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Residual cancer burden is a source of recurrence

Primary tumor Residual disease Recurrence

. et ot
" Goal: Understand the Metabolic
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Common feature of cancer: altered metabolism
Common substrate: Glucose
Cancer hallmarks Glucose Lactate
Inducing Resisting cell
o ’GLUT
Glucose Warburg
Glycolysis Effect
Pyrlfvalenug Lactate
| i J : Adapted from Déaerardmis, Nat Met, 2020 via BioRender
imanon na { iy i Fat is an important source of energy

Adipocyte
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Hanahan, Cell, 2011
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Shift from anaerobic to aerobic metabolism
in residual disease

Primary Regressed

Aminoacyl-tRNA biosynthesis

Regressed tumor show increased fatty acid
Oxidative phosphorylation

metabolism
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Pinpointing metabolic changes could allow existing
therapies to target metabolic reprogramming
Strategies to target pathways for treatment
Glucose Target pathway Agent Development stage
ATP and protein
hrii)us‘::?r:ie‘:s Pyruvate —— Lactate Glycolysis
GLUT1 WZB117, silibinin, Preclinical studies
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Multi-Parametric Imaging Platform to Inform
Cancer Treatment

i\

Inform Cllmcal Treatment
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Madonna, Mol Can Res, 2019
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Sequential imaging allows for in vivo

multi-parametric imaging

2-NBDG: Glucose uptake
(green fluorescence)

TMRE 2-NBDG
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~  Background TMRE  2-NBDG
Zhu, Sci Rep, 2017

Longitudinal Imaging of TMRE +2-NBDG

TMRE: MMP(red fluorescence) in mammospheres
Cytoplasm
Outer membrana
Intermembrane space ’l
Inner membrane - \ 4\
Mitochondrial m‘ «r) D
matrix
Thermofisher Madonna, Mol Can Res, 2019
15
Imaging captures metabolic reprogramming
following treatment of primary tumor
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Differences in metabolic reprogramming associated with
time to recurrence

2-NBDG,,

TMREg,

Fast

v 1!, J.j "isoo
oAy o 0

b
»

7
[ 2
| V. -]
Prima Recurrence
1
‘g 4000
w 3000
2000
1000
3 AL
n

: Y
Madonna, in prep

800

600 r

400

2-NBDG

200

Slow Recurrence

L Slow Primary
. p<0.05 Decreased glucose uptake
L Fast Primary in fast recurrence
B }Fast Recurrence
500 1000 1500 2000

TMREGO

L o
17
Etoximir inhibits CPT1 that transfers fatty acids into
mitochondria for energy production
Etomoxir
(Metabolic therapy) ‘-,b Recurrence
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jd from Martinez-Outschoorn, Nat Rev, 2017
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Targeting fatty acids to changes metabolic repr
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Next step: imaging fatty acid metabolis
Myc regulated GEM models

Bodipy FL c16: fatty acid uptake
(green fluorescence)

515nm
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Bodipy,, responds to biological perturbation in vivo &
paired with mitochondrial imaging to metabolically p

Talking: Nimmi Ramanujam

MYC-high cell lines show increased FAO MYC-on MYC-off
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MYC-on tumors have increased fatty acid uptake MYC-on tumors have increased mitochondrial metabolism
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Bodipyé60 is increased in tumors prone to migra
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Bodipy60 is increased in tumors prone to migra
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Fatty acid uptake imaging can evaluate thera
Talking: Nimmi Ramanujam
2-NBDG and TMRE can evaluate targeted Can we use Bodipy FL c16 to evaluate therapies?
treatment
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Mapping reprogramming to recurrence

Capture metabolic reprogramming of Predict risk of recurrence
residual disease in patients 100
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. 3 . o Talking: Nimmi Ramanujam
Moving to long-term term metabolic profiling to retrEaeees
search for risk of recurrences
Non-tumor
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Talking: Nimmi Ramanujam

Conclusions
L ints key metabolic time points
b Our optical techniques of 2-NBDG and 7 g
TMRE can capture distinct metabolic Ghese

phenotypes of primary, regressing,
dormant and recurrent tumors in
vitro and in vivo.

Mitochondrial
membrane
potential

Our imaging platform allows for the
longitudinal monitoring of metabolic
targeted treatments

2-NBDGy,

Etomoxir Control
TMRE;,

Etomoxir  Control

Additional Bodipy FL c16 can capture
fatty acid uptake in vivo across

preclinical models to better pinpoint
metabolic vulnerabilities

Alternative fuel sources can be imaged
Non-metastatic Metastatic

Fatty acid
uptake
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Talking: Nimmi Ramanujam
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